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The disturbance wave pattern produced from a harmonic point source in a 
compressible flat-plate boundary layer is computed using linear stability theory and 
the direct numerical integration approach. Receptivity coefficients are computed for 
a wide band of least-stable spanwise modes generated at the source, which are 
followed in the streamwise direction in order to study the wave-interference pattern. 
The effect of boundary-layer growth on the development of linear waves is 
determined by using the method of multiple scales. Results are presented for Mach 
numbers of 0 , 2  and 7.  It is found that disturbances spread in wedge-shaped regions 
behind the source and the wedge angle decreases with Mach number. The lateral 
spreading angle for the instability waves turns out to be quite close to the angle 
found experimentally for lateral contamination of turbulence. It is found that, owing 
to wave cancellation, the computed maximum disturbance amplitude is significantly 
lower than that obtained by following the most-amplified single normal mode. 

1. Introduction 
In  natural transition the spectra of the disturbances which are internalized in the 

boundary layer have a wide band of frequencies and spanwise wavenumbers. When 
these disturbances evolve downstream, they are amplified differently depending 
upon the frequency, spanwise wavenumber and Reynolds number. Since the 
Reynolds number varies in the streamwise direction, the identity of the most 
amplified wave also changes in the downstream direction. Hence, there is no single 
wave which will remain dominant in the entire downstream. Furthermore, if the 
waves with different spanwise wavenumbers are phase related, then their mutual 
interference will influence the amplitude of the disturbances, unlike predictions 
which are based on considering only single waves. For low-speed flow, it was clearly 
demonstrated by the wavepacket experiment of Gaster & Grant (1975) and 
calculations of Gaster (1982) that the maximum amplitude in the wavepacket does 
not grow even though the single normal mode grows exponentially. 

In  this paper, we investigate the propagation of disturbances in a supersonic 
boundary layer. The disturbances are introduced from a localized harmonic point 
source. Thus, a wide band of spanwise wavenumbers is excited at the source, but, in 
contrast with the wavepacket experiment, a single frequency is present, namely the 
frequency of the excitation of the source. This problem can be considered as a model 
for studying the boundary-layer instability waves which are generated at isolated 
roughness sites or surface imperfections because of interaction with free-stream 
disturbances of a given frequency. 

When a localized disturbance is introduced into a flow field, the disturbance field 
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can be divided into two regions. One region is near the source and the other is further 
downstream of the source. The flow field in the near-field region, which consists of all 
the discrete modes and a continuous spectrum, was recently studied by Balakumar 
& Malik (1992) (referred herein as BM). We found that the continuous spectrum, 
which appears due to the boundary conditions at the edge of the boundary layer, 
decays algebraically away from the source. Hence, any contribution from the 
continuous spectrum can be neglected in the far field. Among the discrete eigenvalues, 
only one may be unstable and grow exponentially downstream of the source, and all 
the others will decay exponentially. Therefore, the disturbances in the far field 
consist of these exponentially growing discrete eigensolutions, which are the subject 
of this paper. Thus, we first compute the receptivity coefficient for the discrete 
eigenvalues using the approach adopted in BM. In the second step, we follow the 
evolution of the least-stable eigenmodes in a growing boundary layer using multiple- 
scales analysis. We note that this procedure can be adopted for a more general 
problem than a point-source case. We basically use the harmonic point source to 
model the external disturbance and to get the associated receptivity coefficient. 

Several experiments have been done on the harmonic point source problem in 
incompressible and compressible boundary-layer flows. Gilev, Kachanov & Kozlov 
(1981) performed a detailed experiment in an essentially incompressible flow. They 
used hot-wire measurements to determine the amplitude and the phase distributions 
of the streamwise disturbance velocity downstream of the source. From this data 
they mapped out the constant phase lines and calculated the Fourier spectrum of the 
disturbance velocity at different streamwise cross-sections. Mack & Kendall (1983) 
and Mack (1985) investigated this problem experimentally as well as numerically. 
Kosinov & Maslov (1985) and Kosinov, Maslov & Shevelkov (1990) performed 
experiments on the point-source problem in compressible flow. Using Fourier 
analysis they were able to determine the amplification rates of normal-mode 
disturbances. However, they could not measure the amplification rates of the waves 
at small wave angles. Their experiment was performed in a ‘noisy’ wind tunnel and 
it is difficult to discern the effect wind tunnel noise had on their results. We shall 
compare our numerical results with the experiments of Gilev et al. (1981). 

In $2, we formulate the problem when the mean flow is uniform in the streamwise 
direction. The parallel-flow approximation is made for the determination of the 
receptivity coefficient. In $3, a formulation is given for the evolution of the least- 
stable discrete modes propagating downstream in a growing boundary layer. Results 
are presented in $4 and conclusions are drawn in $5. 

2. Receptivity problem 
We consider two-dimensional, compressible boundary-layer flow over an insulated 

flat plate. A harmonic point source of disturbances is embedded in the wall at a 
streamwise location 2 = x,, (see figure 1) .  The distance normal to the plate is 
measured by coordinate y while z represents the spanwise coordinate. The x, y, z 
components of velocity are represented by U ,  V ,  W ,  respectively, and pressure, 
density and temperature of the gas by P, p, T. The corresponding disturbance 
quantities are denoted by (u , v ,w ,p , r ,8 ) .  We are interested in the response of the 
boundary layer to a three-dimensional harmonic excitation of the point source 
starting impulsively at time t = 0. In this section we assume that the basic flow is 
parallel to the z-axis (U(y), O , O ,  P(y), p(y) ,  T(y)) and determine the receptivity 
coefficients for the various modes. We will treat non-parallel effects in the next 
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FIQURE 

section where 

uo = sin wo t 8(z) 8(x - xo) 

1. A schematic of the harmonic point source embedded in the flat plate. 

we consider the development of the disturbances downstream of the - 
source. The linearized, non-dimensionalized Navier-Stokes, energy, continuity and 
state equations for a fluid with dynamic viscosity p are 

dp dTa6 d2p (dT)’ ] ~(~--1)p [ 2p- dU(azL -+- av) +- dp(dU)’ - 0 ] 
dTdyi3y dT2 dy Re dy ay ax dT dy ’ 

(2.4) 

+2---+-- e+- 

au av aw dp aT 
-+p -+-+- +w-+u--0, (ax ay a,) dy ax 

Here the variables are non-dimensionalized as follows : 

velocity by U,, temperature by T,, density by pm, ( 2 . 7 ~ )  

pressure by p, Vm, length by (v,x,,/U,)~, time by (v,x,,)f/L$,, (2.7b) 



232 P .  Balakurnar and M .  R .  Malik 

where U,, T,,p,, Pa, v, are free-stream velocity, temperature, density, pressure and 
kinematic viscosity. Stokes' hypothesis of vanishing bulk viscosity has been used 
here. The non-dimensional quantities appearing in the equations are defined as 

M = free-stream Mach number, U,/(y%T,)i, 

u = Prandtl number, assumed to be a constant value of 0.72, 

y = specific heat ratio, taken as 1.4, 

Re = Reynolds number, ( U ,  zo/v,)~, 

% = gas constant. 

The boundary conditions at the wall are u = 8 = w = 0 and 

u(z, 0, z, t )  = sin wo 7 6(z-z,) S(z) H ( t ) ,  (2.8) 

where wo is the frequency of oscillation of the point source, 6 is Dirac's delta function 
and H ( t )  is the unit step function, which indicates that the motion starts from rest 
at t = 0. We require that the disturbances decay far away from the plate. 

The physical disturbance field may be related to the spectral space by using the 
generalized triple Fourier transform defined as 

J - W  J-cc J-co 

where k,, k, are the complex wavenumbers in the x, z-directions, w is the complex 
frequency, q5 = {u, v, w, 8,p}T, and 6 = {C, v", G,8, p}'. Here, the tilde represents the 
transformed variable and superscript T represents the transpose of a matrix. Since 
4 is a causal function in t ,  the Fourier transform in time is equivalent to the Laplace 
transform in time. Thus (2.1)-(2.6) can be transformed using (2.9) into the following 
system of equations for J: 

(2.10) 

where A, B, C are 5 x 5  matrices whose coefficients are given in Malik (1990). 
Transforming the boundary conditions yields 

v"(k,,O, k , , W )  = - W ~ / ( O J ~ - W ; ) ,  - 
C = G = B = O  at y = O ,  

and4isboundedasy-t a. 

2.11) 

(2.12) 

(2.13) 

By taking the inverse transformations it can be shown (BM) that the solution takes 
the form 

(2.14) 

where I = CiC(k,, wo)  y ( k z ,  y, k,) eikx(wJx-iw 0 + CVB(2, y, k,) e-iwot, (2.15) 

where is the eigenfunction, C is the receptivity coefficient for the discrete mode, 
and VB is the contribution from the continuous spectrum. The receptivity coefficient 
C is determined from the formula 

(2.16) 
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where is a five-element vector {4,v", 6, i,ji}T which is determined by solving the 
non-homogeneous stability problem similar to (2.10)-(2.13) with the boundary 
condition (2.11) modified to 4(y = 0) = 1.  The reader is referred to BM for further 
details for determination of the receptivity coefficient. 

3. Disturbance evolution in the growing boundary layer 
In the previous section we assumed that the mean flow quantities are a function 

of normal coordinate y only. This permits us to analyse the problem using transform 
techniques. The solution consists of two parts: all the discrete modes; and the 
contribution from the continuous spectrum. The continuous spectrum decays slowly 
in the streamwise direction. Hence, sufficiently downstream of the source we see the 
discrete unstable eigenmode. In this section we investigate the downstream evolution 
of the most unstable discrete modes and allow for the effect of boundary-layer 
growth. 

In the previous section we derived that the disturbance emanating from the point 
source is given by (2.14) and (2.15). Since the continuous spectrum and the higher 
discrete modes decay in the downstream direction, only the discrete least-stable 
mode will contribute to the flow field far downstream. Hence, the flow field 
downstream takes the form 

#(x, y ,  z ,  t )  = - eikzr Re { f (xo ,  y, k,, t ) }  dk,, (3.1) 

(3.2) 

2R --Q) ' lm 
where I" = iC(k,, oo) p(k,, y) eilc~(w~)z e-'"ot, 

and kz(wo) is the least-stable discrete eigenmode. Here, the integral (3.1) willbe 
evaluated along the real k, axis. In  a growing boundary layer the expression for I is 
modified to 

f =  iA(x ,wo ,k , )  v(y,z,w0, k,,a)exp 

Here y ( y , x , w 0 , k , , a )  is the eigenfunction at the station x and a(wo,kz,x) is the 
eigenvalue (complex streamwise wavenumber) a t  the station x. A(x,  wo, k,) is a slowly 
varying function of x and 

(3.4) 

We can derive an amplitude equation for A ( x ,  wo, k,) using multiple-scales analysis 
(Saric & Nayfeh 1975 ; Gapanov 1981 ; El-Hady 1991). In the following we describe 
the theory. 

3.1. Multiple-scales analysis 
In this section we find the non-parallel correction to the quasi-parallel compressible 
linear stability problem using the multiple-scales analysis. The assumption behind 
this approach is that the mean boundary-layer flow quantities vary slowly in the 
streamwise direction compared to the disturbance quantities. This introduces two 
lengthscales : the long scale which is the length over which mean flow quantities vary, 
and the short scale which is the length over which disturbance quantities vary. In  the 
multiple-scales analysis, these two lengthscales are treated as independent variables 
and solution is obtained by applying the solvability condition. 

Here, in contrast with $2, mean boundary-layer flow quantities (17, V ,  P , p ,  T) are 
functions of both x and y.  Thus the relevant linearized Navier-Stokes, energy and 

A ( x  = xo, 0 0 ,  k,) = m,, wo). 
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continuity equations differ from (2.1)-(2.5) in that they contain terms such as 
V,aU/ax,aT/ax, etc. These equations are given in Malik (1990). Here the flow 
quantities are non-dimensionalized as in (2.7) except that the analysis is performed 
at a location x: (the superscript * implies dimensional length). Therefore, the local 
lengthscale is (v, z:/u,)i and Reynolds number Re is (u, x:/v,)i. We assume that 
the disturbances vary with the lengthscale ( vm x:/U,)i and the mean flow quantities 
vary with the long lengthscale x:. We define a slow scale x = ex, where E is a small 
parameter equal to 1/Re. Therefore, the mean flow quantities are functions of x 
and y: 

V G Y )  = U(X,Y), W > Y )  = R X > Y ) >  T(X>Y) = T(X3YL P k Y )  = P ( X > Y ) .  

We seek solutions to the linearized Navier-Stokes equations of the form 

q(x,y,z, t )  = A(x)(q0(x,Y)+€ql(x,y)+0(E2))exp i-++(4-iiWot+ik,z , (3.5) 

where q is a vector { u , v , ~ , O , p , 7 } ~  and qi is a vector { ~ ~ , v ~ , w ~ , O ~ , p ~ , 7 ~ } ~  which are 
functions of x and y, and So(x)  is a phase function which is a function of x only. The 
amplitude function A ( 2 )  is also a function of x only. Substituting (3.5) into the 
linearized Navier-Stokes equations and collecting terms of the same order in e we 
obtain the following system of equations : 

[ so:’ 1 

Order co 

Li(qo)=O; i =  I ,  ..., 6, 

Order el 

where Li,Rli,RZi (i = 1,6)  are given in an Appendix.t The boundary conditions are 

and 

ui, v i ,  wi, ei = o at  = 0, 

ui,vi,wi,0,+O when y+m.  

(3.8a) 

(3.8b)  

We observe that the leading-order equations are the linear stability equations for a 
parallel flow and give the eigensolutions qo and a,, = dSo/dX. The higher-order 
equations are non-homogeneous equations in which the operator on the left-hand 
side is the compressible linear stability operator while the right-hand side contains 
the non-parallel terms. 

3.2. Solution procedure 
First we reduce the system of equations (3.6)-(3.7) to a system of first-order 
equations. This yields the following : 

Order so 

-- avo - Byo, 
a Y  

Order 

(3.9) 

(3.10) 

t The Appendix is available on request from the Editorial Office or the author. 
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Here = (u,, au,/ay, vt ,pr ,  e,, ae,/ay, w,, awJay}T is an eight-element vector and B is 
an 8 x 8 matrix derived from (3.6) ; Q, and Q, are eight-element column vectors 
derived from R,, and R,,, respectively. The boundary conditions are 

ut = V( = er = W ,  = o at y = 0, (3.11a) 

and u,, vr, 8,, w, + 0 as y + 00. (3.11 b) 

The order-€, equations, (3.9), give ty, and a,, which are the eigensolutions of the 
linear parallel-flow stability equations. The homogeneous part of the order-$ 
equations is the same eigensystem as the O(so) equations. Hence, to have a solution 
to the inhomogeneous equation (3.10), the inhomogeneous part has to satisfy a 
solvability condition. This condition takes the form 

(3.12) 

where vyo* is the solution of the adjoint of the system (3.9), which can be written as 

with the boundary conditions 

and 

The solvability condition, (3.12), yields 

(3.13) 

(3.14 a )  

(3.14b) 

(3.15) 

where al(x) = i 1; vtT Q2 d~ / 1; vO*T Q1 dye (3.16) 

If we substitute for A ( x ,  w,, k,) into (3.3), then for a flat-plate boundary layer (3.3) 
takes the fopm 

T =  iC(k,,w,,Re,)~,(y,Re,w,,k,)exp 2 i a +-a, d R e  -w, t  (3.17) [ Lo( ,  lk 1 * 1 
and (3.1) becomes 

exp [z [:o i( a, +&al) M e ]  - iw, t }  dk,. (3.18) 

Here Re, is the Reynolds number a t  the location of the point source. In  the next 
section we shall present the results for # obtained from this integral. All the 
differential equations are solved using the fourth-order-accurate two-point compact 
scheme of Malik, Chuang & Hussaini (1982). 
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4. Results 
We consider a flat-plate boundary layer with adiabatic wall conditions. The 

stagnation temperature is taken as 31 1 K for Mach number 2.0 and is assumed to be 
1188 K for M = 7. Sutherland's viscosity law is used in the calculations, which are 
done at  three different edge Mach numbers, M = 0, 2 and 7. The incompressible 
calculations were done to compare with the experimental data. These calculations 
were performed by using the compressible code with an extremely small (but non- 
zero) Mach number. The harmonic point source is located upstream of the neutral 
point for the selected frequencies. The Reynolds number (Re,) at the location of the 
point source and the non-dimensional frequencies 3' = w*v, /V,  are given in table 1. 
Here w* is the dimensional frequency and U,, v, are the free-stream velocity and 
kinematic viscosity, respectively. 

The frequencies are selected based on N-factor calculations, i.e. disturbances with 
these frequencies amplify to significant amplitude ratios. Before we present the 
results, let us describe the procedure adopted to evaluate the integral in (3.18). We 
divide the spanwise-wavenumber axis into small sections. For each fixed spanwise 
wavenumber, k,, the eigenvalue a, and the non-parallel correction a1 are computed 
for a range of Reynolds numbers using a two-point fourth-order compact difference 
scheme. Then the integral in (3.18) is evaluated using linear interpolation between 
any two grid points along the k, axis. The integration ranges in the spanwise 
wavenumber k, are up to 0.542,0.448 and 0.106 forM = 0 , 2  and 7, respectively. The 
step sizes in k, are 0.001 a t  small k, and are increased to 0.002 at large k,; and the 
step size in Reynolds number is 20. The equivalent wave angles at  the maximum 
spanwise wavenumbers are 85O, 89" and 84". At the high Mach number of 7, the 
convergence of eigenvalues is very slow a t  high spanwise wavenumbers and at high 
Reynolds numbers. Hence, we stopped the calculations at the wave angle given 
above. Since these eigenvalues are stable at high spanwise wavenumber and at high 
Reynolds numbers, they will not affect the numerical results except perhaps very 
close to the source. 

Figure 2 shows the receptivity coefficient C(k,,w,) for the three cases. These 
receptivity coefficients for the least-stable modes are based upon the maximum 
amplitude of streamwise velocity fluctuations and are proportional to the amplitude 
of excitation of the harmonic source. We note that C decreases with Mach number 
and varies with the spanwise wavenumber k,. 

4.1. The incompressible case 
Figures 3(a), 4(a), 5 and 6 show the computed results for the incompressible case. 
Figure 3 (a)  (plate 1 )  shows the streamwise velocity u at a time t given by wo 7 = 2m, 
where n is an integer and w, is the non-dimensional frequency (i.e. the signal is 
periodic with time period 2n/00) and at  height Y = 1.0 in the (X,Z)-plane where 
X = (z*/x,*- l ) ,  Y = y*/(v, x*/U,)i  and 2 = z*/xg*. The scaled value X is related to 
the Reynolds number through X = (Re/Re,)2- 1.  Figure 4(a) (plate 2) shows the 
amplitude of the u-velocity in the (X, 2)-plane at the same height. Figure 5 shows the 
spanwise variation of the amplitude of the u-velocity at the same height Y = 1.0 at 
different X-locations given by Re = 605, 705, 805, 905, 1005, 1095. Figure 5(a )  gives 
the results with the non-parallel flow correction while figure 5 ( b )  gives the results 
without this correction, in (3.18). It can be seen that the non-parallel correction not 
only changes the amplitude at  a given Reynolds number, it also affects the 
distribution of u with z. The kink in the u-distribution at  2 = 0 and R = 605 was also 
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M Re, F 

2 900 0.08~10-4 
7 300 0.35~10-4 

0 485 0 . 6 0 ~ 1 0 - ~  

TABLE 1 

r 

0.8 

0.2 

0 0.06 0.12 0.18 0.24 0.30 

k* 
FIQURE 2. Variation of the receptivity coefficient for the leaat-stable mode. 

0.60 r 

0.48 

0.36 

I4 
0.24 

0.12 

0 
-1.2 -0.6 0 0.6 1.2 

Z Z 

FIQURE 5. Amplitude of the u-velocity at several streamwise locations for the incompressible 
case : (a) non-parallel calculation, (a) quasi-parallel flow approximation. 
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1 oo 
3 
rr 
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lo-' 

Re = 485 

0 0.06 0.12 0.18 0.24 0.30 

k, 
FIGURE 6. Spectra of the u-velocity at several streamwise locations for the incompressible case. 

observed in the experiment of Mack & Kendall (1983). In figure 3(a) ,  the largest 
inclination of the constant phase lines is about 50', i.e. the angle made by the 
wavenumber vector is 40'. The half spreading angle of the disturbances is about 10". 

Figure 6 shows the spanwise spectrum of the u-velocity a t  different streamwise 
locations. We observe that near the source the spectrum is flat and the maximum 
occurs for a non-zero spanwise wavenumber. This reflects the fact that near the 
source the maximum amplitude of the disturbances (figure 5 )  occurs away from the 
centreline. With increasing Reynolds number the width of the spectrum decreases 
and the location of the maximum gradually shifts to the zero spanwise wavenumber. 
The spreading of the disturbances in the spanwise direction and the gradual fading 
of three-dimensionality which we observed in figures 4 ( a )  and 5 correspond to this 
behaviour. 

Gilev et al. (1981) performed a comprehensive experiment on the harmonic source 
problem in an essentially incompressible flow : figure 7 shows their experimental 
results, where constant phase lines in the (5, z)-plane were mapped out from the hot- 
wire measurements. It is seen that the wave pattern obtained from the computation 
(figure 3a) agrees very well with these experimental results. Near the source, the 
maximum amplitude occurs at spanwise locations away from the centreline, due to 
wave interference, and the constant phase lines are straight lines which meet sharply 
a t  the centreline. In the middle region, the sharp crests disappear and the wave 
pattern becomes flat near the centre. The amplitude in this region is also flat across 
the spanwise direction (figure 5 ) .  In the downstream region, wave fronts assume an 
arc shape and the maximum amplitude occurs along the centreline. For this 
frequency, F = 0.6 x the maximum amplification occurs for a two-dimensional 
wave. Hence, when the waves travel downstream, the two-dimensional waves are 
amplified the most and the three-dimensionality gradually disappears (see figure 6). 
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FIGURE 3. Wave pattern produced from a point source for Mach 0,2 and 7 as observed near the critical layer 
heights. Here, X is the non-dimensional distance from the source, X = x*/x: - 1 = (&/Re,)* - 1. 
(u)M = 0, F = 0.6 x lo-', Reo = 485; (b) M = 2, F = 0.08 x lo-', Re, = 900; (c)M = 7, 
F = 0.35 X lo-', Re, = 300. 

BALAKUMAR & MALIK (ficing p. 238) 
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FIGURE 4. Distribution of u-velocity amplitude in the (X,Z)-plane for Mach 0, 2 and 7 at the critical layer 
heights. (a)M = 0, F = 0.6 X lo-', Re, = 485; (b)M = 2, F = 0.08 X lo-', Re, = 900; (c)M = 7, 
F = 0.35 X lo-', Re, = 300. 

BALAKUMAR & MALIK 
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- 
FIGURE 16. Distribution of u-velocity amplitude in the (Y,Z)-plane for Mach 0, 2 and 7. (a)M = 0, 
F = 0.6 X lo-', Re,, = 485, Re = 1005; (b)M = 2, F = 0.08 x lo-', Reo = 900, Re = 2900; (c)M = 7, 
F = 0.35 x lo-', Reo = 300, Re = 2900. 

BALAKUMAR & MALIK 
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FIQURE 7 .  Lines of equal phase of disturbances as measured in the experiment 

of Gilev et al. (1981). 
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-0.8 -0.4 0 0.4 0.8 

Z 
FIGURE 8. Amplitude of the u-velocity at several streamwise locations for the Mach 2 case. 

4.2.  The Mach 2 case 

Figures 3(b), 4 ( b ) ,  8, 9 and 10 show the results forM = 2.  Figure 3 ( b )  (plate 1) shows 
the u velocity at a height Y = 2.68 in the (X, 2)-plane and at  a time t given by w, t 
= 2nn. Figure 4 (b )  (plate 2 )  shows the amplitude of the streamwise velocity u in the 
(X,Z)-plane at the same Y-location. Figure 8 shows the spanwise variation of the 
amplitude of the u-velocity at the same Y-location and at different X-locations given 
by Re = 2000, 2500, 3000. We see in figures 4 ( b )  and 8 that the disturbances grow 
in three wedge-shaped regions. One is centred along the X-axis and the other two are 
centred at  oblique angles of f 3.5" from the centreline. In the region between these 
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X 

RQIJRE 9. Streamwise velocity along lines inclined at various angles to the X-axis 
for the Mach 2 case: (a) O", ( b )  0.5', (c) lo, (d) 4 O ,  (e) 6'. 

wedges the disturbance growth is very weak. The constant phase lines (figure 4a) in 
the most amplified region are inclined at about 25" (the wave angle is 65"). The half 
spreading angle of the disturbances is about 7". 

In figure 9, we plot the streamwise velocity u along the lines inclined at 0,0.5", lo, 
4" and 6" to the X-axis at the same Y-height and time as given above. We see that 
the disturbances grow along the O", 1" and 4" lines but they grow only slightly along 
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FIQURE 10. 

kz 
Spectra of the u-velocity at several streamwise locations for the Mach 2 case. 

r 0.7 

- -  t ff / \ A  

F o t - q j j - r , ,  
Y c 
u- 100 t 
- 200 I V 

I I I I I 
0 0.03 0.06 

kz 

Q 1.0 1 a 

t 

I 
I 

I 

/;V 

-0.5 I I I I I I 

0 0.03 0.06 

FIUURE 11. (a) the integrand I, and (b) the amplitude Ie in (4.2) for M = 2, F = 0.08 x 
Re = 2900. 

the 0.5" line. The disturbance growth is much larger along the 4" line than along the 
0" line. This is because the most amplified oblique modes have group velocity 
directed at approximately 4". 

Figure 10 shows the spanwise spectrum of the u-velocity at different streamwise 
locations for Mach number 2. Comparing with figure 6, we note the differences 
between the spectra for the incompressible and compressible flow. Near the source 
the amplitude increases with the spanwise wavenumber k,, peaks near k, = 0.05 and 
decreases slowly with increasing k,. With increasing Reynolds number the maximum 
of the spectrum shifts to a smaller k,. However, the amplitude of the waves near 
k, = 0 grows very little. This is because in compressible flows, three-dimensional 
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waves grow much more than two-dimensional waves. The shift of the location of the 
maximum amplitude indicates that the identity of the most amplified wave changes 
with increasing Reynolds number. The decrease of the width of the spectrum with 
increasing Reynolds number reflects the spreading of the disturbance in the spanwise 
direction. 

To understand why the maximum amplitude occurs along the centreline for the 
incompressible case and away from the centreline for the compressible flows we plot 
the following functions 

I, = ( l /x)  cos k, z Re(?) (4.1) 

and I, = ['I,dkz. 

We note that I, is the integrand in (3.18) and the area under the curve gives the 
amplitude. Figure 11 (a)  shows the variation of I ,  with spanwise wavenumber for 
M = 2, at the location Re = 2900 and 2 = 0 and 0.7, while figure 11 (a) shows the 
variation of I,. Figures 12 (a) and 12(b) show the results for M = 0, Re = 1095 and 
2 = 0 and 0.5. We see that for the incompressible case at 2 = 0, I ,  is positive and 
large in the region k, < 0.03 and oscillates beyond k, > 0.03. Hence, the amplitude 
at  2 = 0 is contributed by the area under the curve up to k, = 0.03 as evident in 
figure 12(b) .  For 2 = 0.5 we observe that cos(k,z) modulates the function I , ,  as 
compared to the 2 = 0 case, and makes it more oscillatory. Hence, owing to the 
cancellation of areas of different signs, the amplitude is small away from the 
centreline. In contrast, for M = 2 (figure 11) we see that at 2 = 0, the function I ,  is 
oscillatory and, hence, the amplitude is small. At  2 = 0.7, owing to the modulation 
by cos(k,z), I ,  is shifted to the positive side and hence the area under the curve 
becomes large. 

In figure 13(a), we plot the amplitude ratio, log,(a(z)/a(z = zJ), obtained from 
three different calculations. Curve 1 is obtained from the results of (3.18). The a(z), 
which is the amplitude of the streamwise velocity component, is obtained by fixing 
an z-location and selecting the maximum in the spanwise direction. This result is 
referred to as the non-parallel calculations. The disturbance amplitude a t  the source, , 
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FIQURE 13. (a) Amplitude ratio and (b)  locus of maximum amplitude for M = 2. Calculations 
performed using (3.18) (non-parallel) (curve I) ,  (4.3) (parallel) (curve 2) and most-amplified single 
normal mode (curve 3). 

a(z = xo), is taken from the receptivity calculations discussed above. Curve 2 is 
obtained by neglecting the non-parallel effect in the calculation and evaluating the 
following integral instead of (3.18) : 

(4.3) 

This is referred to as results based on parallel theory. Curve 3 is also obtained under 
the quasi-parallel approximation but the amplitude ratio is computed by using the 
most-amplified normal mode. Thus, in this case a single mode is used and no 
interference effect is present. 

We see that the single-mode calculation overestimates the amplification of 
disturbances. For example, logarithmic amplitude ratios at X = 10 are 4.5, 3.0 and 
6.9 from non-parallel, parallel, and single-mode calculations, respectively. The lower 
ratios in the parallel and non-parallel calculations are due to the interference effects. 
If the waves are not in phase, cancellation will occur and the amplification will be less 
than that for a single wave. We see that when the amplitude is computed from (3.18) 
or (4 .3) ,  there is an initial decay of the disturbance due to wave cancellation. If we 
match the amplitudes of the parallel and single-mode computations at X = 1.4 
(where (4 .3)  shows a minimum), then there is a difference of about 2 in the 
logarithmic amplitude ratio at  the end of the computation. The results from (3.18) 
and (4.3) also differ due to non-parallel effects, which at this Mach number are 
significant. In figure 13 (b )  we have plotted the locus of the maximum amplitude in 
the (X,Z)-plane and the integration path which is followed in the most-amplified 
single-mode calculations. It is seen that they all lie close to each other, which shows 
that the waves grow along the group velocity direction. 

4.3. The Mach 7 case 
Figures 3(c ) ,  4 ( c ) ,  14 and 15 show the results for M = 7 ,  F = 0.35 x lo-*, Re, = 300. 
This frequency gives the largest N-factor at the Reynolds number of 3500. For this 
frequency there exist unstable first and second modes. Up to a Reynolds number of 
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FIGUFLE 15. Spectra of the u-velocity at several streamwise stations for the Mach 7 caae. 

about 2500, the disturbances are amplified due to the first mode. The second-mode 
disturbances are amplified after that Reynolds number. Figure 3(c) shows the 
u-velocity in the (X, 2)-plane at  a height Y = 18 and a time t given by w,t = 2na. 
Figure 4(c) shows the amplitude of the u-velocity in the (X,Z)-plane at  the same 
height. Figure 14 shows the spanwise variation of the amplitude of the u-velocity at 
the same Y location and at X locations given by Re = 1000, 2000, 3000 and 3500. 
Figure 15 shows the spanwise spectrum of the u-velocity at  different streamwise 
locations. 
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FIGURE 17. Comparison of the computed lateral contamination angle for the instability waves (0 )  
with the lateral turbulence spreading angle obtained experimentally (Fischer 1972) (shaded 
region). 

.First, we observe the differences between the results obtained at the lower Mach 
number M = 2 and the high Mach number M = 7. At M = 7, the disturbances are 
amplified along the centreline, as well as along the oblique directions. Up to a 
Reynolds number of 3000, the amplitudes are larger in the oblique direction than 
along the centreline. Above a Reynolds number of about 3000, the amplitude along 
the centreline becomes higher. As explained earlier, this is because the second mode 
becomes dominant at higher Reynolds numbers. In  figure 14, we see that for 
Re = 3500 there exist three peaks between 2 = 0 and 2.5. It is interesting to note in 
figure 3 (c) that the angles of the constant phase lines are different in these three peak 
regions. Along the centreline they are almost two-dimensional, between 2 = 0.5 and 
1.5 they are inclined at 58", and beyond that they are inclined at 31". In  other words, 
the wave orientation angles are O", 32" and 59" in the three regions. In the narrow 
regions where these different constant phase lines merge, we observe the valleys 
which appear at 2 = 0.5 and 1.5 for Re = 3500 in figures 4(c) and 14. For this Mach 
number the lateral spreading angle varies from about 2" at low Reynolds number to 
about 1.5" at higher Reynolds number. 

The spectra in figure 15 shows the importance of the first and second modes. Even 
at the high Reynolds number of 3500, the amplitudes for the oblique modes are larger 
than for the two-dimensional second mode. This shows that, even at high Mach 
numbers, the first mode remains as important as the second mode. However, the 
picture would change in the presence of wall cooling, due to its stabilizing effect on 
the first mode and destabilizing effect on the second mode. 

Figure 16 (plate 3) shows the amplitude of the u-velocity in the (Y, 2)-plane for the 
three different Mach numbers 0, 2 and 7, at X-locations Re = 1005, 2900 and 2900 
respectively. We again see the splitting of the disturbances in compressible flows 
when they propagate downstream. We also observe that the critical layer moves 
towards the edge of the boundary layer with increasing Mach number. 

In  figure 17, we compare the spreading angles obtained by us with some 
experimental results for the lateral spread of turbulence (see Fischer 1972). 
Calculations performed at Mach 4.5 resulted in a half-spreading angle of about 4". It 
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is clear that the spreading angle decreases with the Mach number. The data collected 
by Fischer are for various sources of disturbances including roughnesses. We see that 
our results are quite close to the angles found experimentally for the lateral spread 
of turbulence over a wide range of Mach numbers. It may be that the lateral 
contamination of turbulence is an instability-related phenomenon or that the region 
behind the disturbance source in the experiments was in a laminar state. 

5. Conclusions 
We have investigated the effect of wave interference in supersonic boundary 

layers. A harmonic point source embedded in the wall introduces disturbances with 
a given frequency and a wide band of spanwise wavenumbers. The calculations are 
performed using a direct numerical integration approach and the non-parallel effects 
are considered by using the method of multiple scales. Results are obtained for Mach 
numbersM = 0 , 2  and 7. Mach 2 results are clearly different from the incompressible 
M = 0 results, owing to the effect of compressibility. Additional calculations 
performed at Mach 4.5 (but not reported here) show that, qualitatively, there is very 
little difference between the results for M =  2 and 4.5, because in both cases 
first-mode disturbances dominate. At  Mach 7, the second-mode disturbance becomes 
important and, therefore, leaves its distinct mark on the disturbance pattern. 

Our results show that, owing to the localized nature of the disturbance, the energy 
is scattered over a wide band of spanwise wavenumbers. As the waves are amplified 
downstream of the source, the maximum amplitude occurs away from the centreline. 
As disturbances propagate further downstream, the maximum amplitude occurs 
along the centreline in incompressible flows and the three-dimensionality gradually 
fades away. 

In  compressible flows at low supersonic Mach numbers, the maximum amplitude 
occurs along oblique directions in the entire downstream region and the amplitude 
remains very small along the centreline. A t  high Mach numbers, the disturbances are 
amplified both along the centreline and in oblique directions. The two-dimensional 
second mode eventually takes over, but the amplitude of the oblique first mode 
remains of comparable order. Wall cooling may change the picture owing to its 
stabilizing influence on the first mode and destabilizing effect on the second mode. 

In  all the cases we considered, it is also observed that the growth of the 
disturbances is weaker than that obtained by following the most-amplified waves. 
This is due to the mutual interference of different waves. The lower amplitudes found 
due to wave cancellation do not necessarily mean that the flow is more stable, since 
various modes generated in the boundary layer can interact nonlinearly, leading to 
an early breakdown. If only a single mode is excited, it may have to grow to higher 
amplitudes before secondary instabilities can develop from background disturbances. 

We also observe that the disturbances spread in wedge-shaped regions behind the 
source and the wedge angle decreases with the Mach number. At Mach numbers of 
0, 2 and 4.5, the lateral spreading half-angles are found to be about lo", 7' and 4', 
respectively. The spreading angle for the Mach 7 case is between 1.5' and 2' 
depending upon the Reynolds number. Since disturbance energy propagates in the 
group velocity direction, these spreading angles are associated with the highest group 
velocity angles for the oblique unstable waves, which may change somewhat with the 
frequency. It is also observed that these lateral spreading angles are quite close to the 
angles found experimentally for the lateral spread of turbulence over a wide range of 
Mach numbers. 
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